Posts

^What is light?

^What is light?

In general light means following three parts

  1. Infra red radiation or thermal radiations
  2. visible light
  3. ultraviolet light,

As these are parts of EM spectrum, thus light is electromagnetic, thus properties of light are same as that of any EM wave. Light can behave like a ray, a wave & as a particle, depending on its interaction with the objects it encounters on its way.

^Electromagnetic Force

^Electromagnetic Force

EM – force acts between charged particles. It binds electrons with nuclei to form atoms & binds atoms together to form molecules. It is responsible for the properties of solids, liquids, & gases. Force of attraction/repulsion between two static charges is described by the Coulomb’s law i.e

Electric forces and magnetic forces were considered to be separate forces until the 1860s when James Clerk Maxwell was able to demonstrate that they were different manifestations of the same force – the electromagnetic force. Infact, all contact forces such as: Frictional force (f), Viscous force (Fv), Air drag (fd) Spring force (Fspring or Fr), Normal reaction (N), Tension force in ropes, strings & muscles (T), Buoyant force (B or U), Surface tension force (FS) are actually due to the electromagnetic force.

^Maxwell equations

^Maxwell equations

Following five equations give a complete description of all em– interactions and are called Maxwell eq:

^ γ-rays

 – rays

(a) Produced in nuclear reactions and are also emitted by radioactive nuclei (such as Co 60 & Cs 137).

(b) Properties: Effect on photographic plate, fluorescence, ionization, diffraction, high penetrating power & can cause serious damage if absorbed by living tissues.

(c) Used

  1. in radio therapy to treat certain cancers and tumors
  2. to produce nuclear reactions
  3. to study the atomic nuclei.

^Ultraviolet light

^Ultraviolet light

(a) Produced by special lamps like mercury and iron are lamps and by very hot bodies like sun.

(b) Properties: Effect on photographic plate, fluorescence, ionization, highly energetic, tanning of the human skin.

(c) Used

  1. To destroy bacteria and for sterilizing the surgical instruments
  2. In the detection of forged documents finger prints
  3. In burglar alarms etc as they can cause photoelectric effect.
  4. For studying fluorescence
  5. In the study of molecular structure and arrangement of electrons
  6. To prevent the food stuff.

^Visible light

^Visible light

  1. Produced by hot bodies like sun, electric bulbs and tubes etc. as a result of electronic transitions. Our eyes are sensitive to visible light which helps us to collect the information about our surrounding.
  2. Properties: Reflection, refraction, interference, diffraction, polarization, photoelectric effect, photographic action, sensation of sight.

^Infra red waves


^Infra red waves

(a) Also called heat waves & are produced by hot bodies and molecules.

(b) Properties: Heating effect, reflection, refraction, diffraction & propagation through fog.

(c) Used

  1. In taking photographs during the conditions of fog, smoke etc. as these waves are scattered less than visible rays and hence can travel longer distances through atmosphere under fog, smoke etc.
  2. In weather forecasting
  3. In checking the purity of chemicals
  4. In the study of molecular structures
  5. For producing dehydrated fruits
  6. In green houses to keep the plants warm
  7. To provide electrical energy to satellites using solar cells.
  8. To treat muscular strain.
  9. In solar water heaters and cookers.

^Micro waves

^Micro waves

(a) Produced by special vacuum tubes like klystrons & magnetrons. Due to their shorter wavelengths the microwaves don’t spread or bend around the corners of any obstacle coming in their way, hence can be transmitted as beam signals in a particular direction.

(b) Properties: Reflection, refraction, diffraction and polarization.

(c) Used in

  1. Radar systems used in aircraft navigation.
  2. In communication via satellites.
  3. Speed guns to determine speed of moving automobiles, cricket balls etc.
  4. Ovens for cooking
  5. In the study of atomic and molecular structure.

*||gm law of resultant of two vectors

*||gm law of resultant of two vectors

Resultant of two vectors inclined at an angle θ is given by the diagonal of the parallelogram formed by them. If 

are along adjacent sides of a parallelogram , then  will be the diagonal of the same parallelogram provided 

all have same order. act at an angle θ have, then

c2 = a2 +b2 + 2 ab cosθ    [Law of cosine

 

^Cu voltameter

Cu voltameter

It consists of a glass vessel containing an aqueous solution of CuSO4 as electrolyte & two copper rods as electrodes. Copper sulphate in aqueous solution dissociated as .

Due to the applied p.d. the SO2-4 ions drift towards the anode & the Cu2+ ions drift towards the cathode.

The SO2-4 ions on reaching the anode react with Cu atoms of anode to form CuSO4. i.e.

Cu + SO2-4 → Cu2+ SO2-4 + 2 e

Also the oxidation reaction at the anode is

Cu → Cu2+ + 2e

These Cu2+ ions dissolve into the solution, while the electrons so released flow towards the positive terminal of the battery via the external circuit. The Cu2+ ions on reaching the cathode get neutralized by the electrons flowing in from the negative terminal of the battery i.e. reduction occurs at the anode, Cu2+ + 2e → Cu.

The net effect of electrolysis is that one copper atom is deposited at the cathode for each pair of electrons flowing through the connecting wires, thus copper is dissolved from the anode and deposited at the cathode in such a way that the concentration of CuSO4 in the solution remains constant & there is no accumulation of charge any where.

error: Content is protected !!
Call 9872662552