*Property of supplementary angles.

*Property of supplementary angles.

If α + β = 1800, then:

sinα= sinβ,cosα = -cosβ & tanα= – tanβ

*Property of complementary angles.

*Property of complementary angles.

If α + β = 900, then:

sinα = cosβ, cos α = secβ & tanα = cotβ

 

*The three sides and three angles are called its six elements.

*The three sides and three angles are called its six elements. The angles are represented by the capitals letters A, B and C and the sides are represented by small letters a, b and c. Following results are useful to solve a triangle.

*Even & odd functions

*Even & odd functions

A function f (x) is called even, if f (- x) = + f (+x).

called, odd, if f (- x) = – f (+x).

otherwise called neither even nor odd.

cos and sec are even and remaining tan, cot, csc & sin are odd, thus

cos(- x) =  + cos x & sec(- x) = + secx

sin(- x) = – sin x & csc(- x) = – csc x

tan(- x) = – tan x & cot(- x) = – cot x

*Transformation formulae sinA + sinB = 2sinC cosD

*Transformation formulae 

sinA + sinB = 2sinC cosD

sinA – sinB = 2cosC sinD

cosA + cosB = 2cosC cosD

cosA – cosB = – 2sinC sinD

*Semi angle formulae

*Semi angle formulae

*Expansion formulae sin (A ± B) = sin A cos B ± cos A sin B

*Expansion formulae

sin (A ± B) = sin A cos B ± cos A sin B

cos (A ± B) = cos A cos B ± sin A sin B

>Trigonometric series

>Trigonometric series

*Commonly used values

*Commonly used values

*Range of T – fns sinθ & cosθ ε [ -1, +1]

*Range of T – fns

sinθ & cosθ ε [ -1, +1]

tanθ & cotθ ε (– ∞ , +∞)

cosecθ & secθ ε (– ∞, – 1] U [+1, +∞)

error: Content is protected !!
Call 9872662552